
Journal of  Statistical Physics, Vol. 41, Nos. 3/4, 1985 

One-Dimensional Rigorous Hole Theory of Fluids: 
Internally Constrained Ensembles 

Zeev Elkoshi, 1 Howard Reiss, 1 and Audrey Dell  Hammerich I 

Received March 18, 1985 

A "hole" in a fluid is specified in a well-defined manner. The concentration of 
"holes" is a thermodynamic property of the fluid and we derive this concen- 
tration in three different ensembles for a one-dimensional fluid of hard rods. The 
thermodynamics of these rigorously defined holes is developed, and the proper- 
ties of holes are explored. The ensemble in which the concentration of holes is 
maintained fixed exhibits dramatic properties. Finally, pair correlation functions 
for hard rods in the various ensembles are computed. Contrary to a frequently 
made assumption, the equilibrium number of holes is found to never be propor- 
tional to the probability of finding a single hole in the fluid. Constraining the 
concentration of holes as well as the density leads to dramatic structural effects 
prominently displayed by the pair correlation function. The ensemble in which 
the concentration of holes is fixed is an example of an "internally constrained" 
metastable system. 

KEY WORDS: Exact hole theory; pair correlation function; hard rods; one- 
dimensional systems. 

1. I N T R O D U C T I O N  

Free volume and hole theories/~ 4) achieved considerable popularity in the 
development of heuristic, modelistic approaches to fluids. These theories 
have either been of the lattice variety 15) (which are in fact theories of 
crystalline rather than fluid systems), or of the fluctuation type, (6) in which 
estimates of the probability of appearance of at least one "hole" in the fluid 
are used to calculate the average number of simultaneous holes occurring 
at equilibrium. Among other things, this average number is presumed to 
have relevance with respect to transport processes characterized by 
viscosity and self-diffusion coefficients. 
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As long as the focus has been on the achievement of approximate, 
heuristic descriptions of fluid properties, the hole and free volume theories 
have proved convenient and serviceable. One wonders, therefore, whether it 
is possible to develop a rigorous theory of holes, in the sense that, in prin- 
ciple, it can be made as exact as possible simply by the expenditure of more 
work (even though that work may be prohibitive in human terms). The 
"equilibrium number of holes," properly defined, is a thermodynamic 
property of the fluid, and should, in principle, be calculable. The ultimate 
usefulness of such an exact theory remains to be demonstrated, but a num- 
ber of interesting questions are easily posed. For example, in dense fluids, 
are the holes mutually isolated, leading to an ideal solution of holes, or 
does the potential of mean force between holes become so long range that 
this is not possible? Since holes are a thermodynamic property, can a low 
concentration of holes make it easier to design theories of dense fluids? 
Another question concerns the behavior of holes in a hard-sphere fluid in 
the neighborhood of the hard-sphere phase transition. ~7) Since the number 
of holes constitutes a thermodynamic property, does this number, 
calculated along the analytic continuation of the fluid branch of the hard- 
sphere system, give rise to configurations which exceed the close packing of 
spheres? If so, light may be thrown on the mechanistic reasons for the 
occurrence of the hard-sphere transition. 

In the present paper we develop a rigorous fluid theory of holes for a 
one-dimensional system of hard rods, e.g., we actually calculate the 
equilibrium number of a well-defined species of hole. At this late date, one 
needs to ask why additional work on such an unreal system (and one 
which does not even possess a phase transition) should be performed. One 
answer is usual; it provides an opportunity to develop insight into real 
systems, in view of the possibility of developing the theory exactly. Beyond 
this, however, we have in mind the development of a theory, prefatory to 
the investigation of certain nonequilibrium properties of hard rods. Non- 
equilibrium theories of hard rods have recently been the subject of atten- 
tion by a number of authors. ~8 11) 

One feature, of particular interest, deals with the properties of ensem- 
bles which are "internally constrained. ''~12'13) For example, we shall be able 
to constrain the fluid internally, by fixing the number of holes, i.e., by 
treating the number of holes as a controllable thermodynamic variable. The 
resulting system has many interesting properties. 

2. DERIVATION OF THE BASIC THEORY 

We consider a system of N hard rods, each of length a, confined to a 
one-dimensional volume (length L). At the outset, it is necessary to define 
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what we mean by a "hole." Consider a particular configuration of the rods. 
Into this configuration we now insert as many additional hard rods as can 
be fitted into the system without disturbing the original configuration. This 
maximum number of additional rods is defined as the number of "holes" 
corresponding to the particular configuration under consideration. If we 
denote a particular configuration by the symbol C, then the number of 
holes going with the Cth configuration will be denoted by hc. Suppose that 
Pc is the probability of occurrence of the Cth configuration when the 
system is in thermodynamic equilibrium. Then the equilibrium number of 
holes will be given by ( h ) ,  where 

( h )  = ~ h c P  c (1) 
c 

We note that the addition of rods, in order to "measure" the number 
of holes, must in no way perturb the various configurations to which they 
are added. Thus it is improper to think of the holes as "solute" rods which 
can themselves come to equilibrium with the original solvent rods. If this 
were the case it would be relatively easy to provide a general formula for 
the equilibrium number of holes, even in a three-dimensional system. As it 
stands, we have not yet been able to advance such a formula (even in terms 
of quantities, such as partition functions, which themselves cannot be 
evaluated exactly) for anything beyond a one-dimensional system. If such a 
formula were available it would be possible to arrive at well-defined 
approximations for the equilibrium number of holes which might be con- 
tinually improved, using a well-defined process. The provision of such a 
formula remains an important task for the future. In this paper we restrict 
attention to the one-dimensional case. 

In order to evaluate ( h )  for our system of hard rods, it is convenient, 
for the purpose of mathematical analysis, to quantize all distances in terms 
of a quantum u which we will allow to become zero (so that we pass to the 
continuum) after the most difficult formulas have been derived. We choose 
u so that the number of quanta in the length a of a rod is an integer co. 
Thus 

a= cou (2) 

The number of quanta in the length L will be denoted by 

2P = L / u  (3) 

Now, in the hard-rod system, additional rods can only be fitted into 
the unoccupied spaces between pairs of the N original rods. However, such 
an unoccupied space must have a length greater than 2a (measured in 
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terms of the distance between the centers of hard rods) or contain a num- 
ber of quanta greater than 2co. In fact, if the unoccupied interval has a 
length lying between 2a and 3a it will accommodate only one hard rod, at 
the most, and will contribute one hole to the system. If its length lies 
between 3a and 4a it will accommodate two hard rods and contribute two 
holes to the system. In general, if the length lies between (n + 1)a and 
(n + 2)a it will contribute n holes. We denote the number of intervals in a 
configuration, capable of contributing n holes, and of length 2, measured in 
units of the quantum u, by gn~u. The quantum u plays the role of a differen- 
tial of length, and g,~. is therefore a linear density. Clearly 2 is constrained 
by n to lie in the range 

(n+  1)co < 2 ~< (n + 2)e) (4) 

We shall characterize a configuration by the set of numbers gnxu 
corresponding to it. The number of distinct arrangements corresponding to 
a distribution characterized in this manner is given by 

N! 
= (5) 

I-I. 1-L (g.~u)t 

where N appears in the numerator because the total number of spaces 
between the rods is N. We are of course considering a system in the ther- 
modynamic limit, in which end effects can be neglected. Conservation of 
spaces requires 

(n + 2)co 

g , ; u  = N (6) 
n - 0 2 =  ( n +  1)~o+ 1 

Similarly the conservation of length requires 

(n + 2 )~ 

Z ;t(g,xu) = 5r (7) 
n = 0 2 = ( n + l ) ~ + l  

According to our definition the number of "holes" in the system is given by 

(n + 2)co 

h = ~ n(g,,;~u) (8) 
n = O  2 = ( n +  1)o9+ 1 

In order to obtain the equilibrium distribution of gn~u, we maximize f2 in 
Eq. (5) subject to the constraints, Eqs. (6) and (7). Employing the method 
of undetermined multipliers, in the usual manner, we obtain 

g,,,~ u = K~ "~ ( 9 ) 
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In which K and c~ are parameters to be determined by substitution of 
Eq. (9) into Eqs. (6) and (7). All the sums prove to be geometric series and, 
except for a certain amount of tedium, are easily evaluated. They lead to 
the results 

5 ~ L o~ 1 
. . . .  1-t - - q  (103 
Nco Na  c o ( 1 -  c~ ) co 

K -  N(1 - c~) 
~ + 1  (11) 

At this point we pass to the continuum, allowing u to approach zero, and 
co to approach infinity. Examination of Eq. (10) shows that if c~ is not 
infinitesimally different from unity, the ratio L / N a  will be unity. Since we 
know this not to be the case, it is clear that, in the continuum limit, c~ must 
have the form 

c~= l--g--+ 1 (12) 

where e is an infinitesimal. Then 

~ =  (1 - e )  ~ = e  ~ (13) 

where 
=eco (14) 

in which the right-hand member of Eq. (13) is the limiting expression when 
co goes to infinity while e is infinitesimal. 

Continuing to regard co as infinite and substituting Eqs. (12), (13), and 
(14) into Eq. (10) yields the result 

N 
- - -  (15) 

L/a  - N 

Substituting Eqs. (12) and (13) into Eq. (11) yields 

K =  Ne:e  (16) 

The result of substituting Eq. (9) into Eq. (8) is 

No~ ~ 

( h ) -  l_c~ ~ (17) 

in which we have used Eq. (11) for K. Making use of Eqs. (12) and (lff) in 
Eq. (17) finally gives, for the equilibrium number of holes, 

Ne - ~ 
( h ) - l _ e _  ~ (18) 
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As indicated earlier, it is of some interest to consider an ensemble in 
which the number of holes h is constrained while the length L is allowed to 
fluctuate freely. The average value L of the length, at equilibrium, may then 
be calculated as follows. ~ in Eq. (5) is maximized subject to the con- 
straints specified by Eqs. (6) and (8) in which, now, h is held constant. The 
form of gnau is then given by 

gn~u= K'fl n (19) 

in which the parameters K' and /~ are to be determined by substituting 
Eq. (19) back into Eqs. (6) and (8). One finds 

K ' - N ( 1 - f l )  (20) 
(,0 

h 
/~= (21) 

N + h  

( L )  = a[h + 3N] (22) 

where we have substituted Eqs. (20) and (21) into Eq. (19) and the latter 
into Eq. (7) in order to obtain {L) .  Once again, all the sums are simple 
geometric series. 

The ensemble in which the number of holes is maintained fixed may be 
regarded as (and in fact is) internally constrained. Sometimes, a statistical 
mechanical analysis of an internally constrained system is easier than one 
dealing with a closely related non-internally-constrained system. For exam- 
ple, lattice free volume theories of fluids involve systems in which molecules 
are constrained to move within the free volume of a lattice cell. Often if the 
two systems are close enough, in some average sense, thermodynamic 
properties calculated using the mathematically simpler internally con- 
strained system may be reasonable approximations to the corresponding 
quantities of the unconstrained system. For this reason it is of interest to 
compare the equilibrium relation between the fixed value of h and the 
average value, { L ) ,  in the internally constrained system with the 
corresponding relation between the average value, ( h ) ,  and the fixed value 
of L in the non-internally-constrained one. We can use Eqs. (18) and (22) 
for this purpose. Thus, substituting Eq. (15) into Eq. (18) yields 

N exp[ -- N/(L /a  -- N)] 
( h )  = (23) 

1 - exp[- - N / ( L / a  -- N)-I 
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Solving Eq. (22) for h yields 

{ L )  3 
h = - -  2 N (24 t 

a 

Equations (23) and (24) are quite different, except in systems of low den- 
sity, where 

L>> Na (25) 

Then the exponentials in Eq. (23) may be expanded to linear terms to give 

(h ) =--L- 2N (26) 
a 

Except for having 2N in place of 3N/2, Eq. (26) is identical with Eq. (24), if 
the average value h is interpreted as a fixed value. Thus the thermodynamic 
properties derived from the internally constrained ensemble are not well 
matched to those of the corresponding non-internally-constrained one. 

For many reasons it is appropriate to define a "hole," as we have, by 
using "additional rods" having the same length a as the original rods in the 
fluid. If the "hole" is defined in terms of additional rods of increasingly 
smaller length, it is easy to show (although we do not do so here) that the 
thermodynamic properties of the internally constrained system correspond 
more and more closely to those of the non-internally-constrained one. 
Ultimately, when the holes are of zero length, the properties of both 
systems become identical. This is not surprising; fixing the number of holes 
of zero length represents no constraint at all. 

Equation (23) indicates that in the non-internally-constrained system 
the equilibrium number of holes goes to zero only when the system is close 
packed, i.e., when L = Na. In contrast Eq. (22) shows that, in the internally 
constrained system, setting h - -0  does not lead to an average value of L 
equal to Na. Instead with h = 0, L = 3Na/2. Expressed in another way, 
Eq. (22) states that when the number of holes in the internally constrained 
system vanishes, the system has a density smaller than the close-packing 
density. 

It is natural to inquire into the thermodynamic properties of an 
ensemble in which both the number of holes and the length are constrained. 
To accomplish this ~ in Eq. (5) must be maximized subject to N, • ,  and h 
being held constant in Eqs. (6), (7), and (8). When this is done, the form of 
gn~u is given by 

_ _  tr 2 n gnxu-  K cqfl 1 (27) 
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in which K' ,  cq, and fl~ are to be determined by substituting Eq. (27) into 
Eqs. (6), (7), and (8). Once again the various sums are geometric series, 
and we find 

N = K "  ~+1 1 - e ~ '  
1-/~l~g 1-~, 

K"~7+1(1-~r) I 1 q ~e= (~7;150--~-~) 1-~1 

h = K " f l l  1 - f l l ~ J  1 - e l  

Dividing Eq. (30) by Eq. (28) yields 

h f l ~ '  
N 1 - / ~ t ~  

(28) 

co(1 - 2c~T) -co/~' c~7 ] (29) 
1-~7 +1-~1~73 

(30) 

(31) 

N2 qb ( h e ~  n+l 
g";" = ha 1 - e  -~ \ - ~ - - s  e-~/~ (35) 

in which it is understood that 2 satisfies Eq. (4). It is convenient to write 
Eq. (35) in terms of l = 2u where I has the dimensions of length. We obtain 

N 2 (b ( h e ~  n+' 
g,t = ha 1 - e -~ \ N - - ~ J  e t~/a (36) 

Using Eqs. (33) and (34) in Eqs. (28), (29), and (30) we can solve 
simultaneously for ~1, /31, and K'. These parameters may be substituted 
into Eq. (27) to yield for gnx the result 

~b = elco (34) 

where 

Now we wish to pass to the continuum so that co becomes infinite. From 
Eq. (31), we see that, in this limit, cq must be only infinitesimally different 
from unity unless h is zero. Thus once again we are forced to write an 
equation like Eq. (12), namely, 

~1 = 1-~1 ~ 1 (32) 

in which el is infinitesimal. Furthermore, we obtain, similar to Eq. (13), 

~ = (1 -e l )~  e ~ (33) 
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As a result of the simultaneous solutions of Eqs. (28), (29), and (30) 
we find that ~b is determined by the following relation: 

1 1 L N + h  
- -  = Q  (37)  

e ~ -  f Na X 

where we have defined a quantity O in an obvious manner. From Eq. (37), 
it is clear that ~b has the following bounds, 

- ov ~<~b ~< oo (38) 

The upper bound being realized when Q = 0, and the lower bound when 
= 1. When Q = 0.5, ~b is equal to zero. The limit Q = 1 is characterized by 

the relation 

L = a (2N+ h) (39) 

While the limit Q = 0 corresponds to 

L = a ( N  + h) (40) 

Equation (40) implies that "holes" and rods are "close packed." One way 
of achieving Eq. (39) is to consider a configuration in which "holes" are 
"close packed" while each rod is allowed to wander through a free volume 
of length 2a. We shall have more to say about these relations later. 

3. V A R I O U S  A S P E C T S  OF T H E R M O D Y N A M I C  B E H A V I O R  

We first investigate (for the one-dimensional hard-rod system) the 
relation between the equilibrium number of holes and the probability of 
finding at least one hole at a particular location in the system. The latter 
probability is simply the probability of finding a space of length greater 
than 2a between two rods, and has been calculated by Helfand, Frisch, and 
Lebowitz. (14) These authors show that the probability Po of having such a 
space is 

Po = (1 - p a )  e-pa/(1--pa) (41) 

in which p is NIL. Expressing ( h )  in Eq. (23) in terms of p, and compar- 
ing the result with Eq. (41) we find 

Lp 
( h )  - (1 -pa ) (1  - e  -pa/(l P~)) P0 (42) 
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From this equation it is evident that (not unexpectedly) h is not directly 
proportional to Po. Occasionally, the assumption of such proportionality 
has been made in the development of hole theories of fluids. 

In the limit of vanishing density, p, Eq. (42) reduces to 

L 
( h )  = - Po (43) 

a 

so that, in this limit, proportional behavior occurs. The quantity L/a can 
be given the following interpretation. If "holes" and rods are considered to 
be close packed, then L/a becomes the sum of the number of rods and 
holes, or the number of lattice cells in a lattice model in which the total 
number of sites is equal to the sum of the numbers of rods and holes. In 
this interpretation, the hole reduces to a lattice vacancy and Po is simply 
the mole fraction of vacancies. 

Unfortunately, one cannot generalize Eq. (42) to the three-dimen- 
sional case. It it were possible to do so, we would have a well-defined (in 
the sense mentioned earlier) method for approximating the equilibrium 
number of holes, since well-defined methods exist for approximating Po. 

Although the "hole" may not be regarded as an ordinary solute species 
engaging in short-range interaction with the hard rods (because "holes" are 
not allowed to perturb the configuration of the hard rods), it is 
nevertheless a component of the "solution." It is therefore possible to 
express the Helmholtz free energy of the system as a function of the num- 
ber of holes, and to calculate the chemical potential of a hole. The 
canonical ensemble partition function for the system may be expressed as 

1 N! u u 
Q(N, h, L, T) = ANN[ Fin ~I~ (g,zu)! (44) 

where the quantity, in parentheses on the right, is the configuration 
integral, and the products over n and 2 are subject to the constraints 
embodied in Eqs. (6), (7), and (8). A is the usual de Broglie wavelength 
and depends only upon the temperature, T. The Helmholtz free energy is 
obtained in the conventional manner as 

A = - k  B T In Q (45) 

where k8 is the Boltzmann constant. The chemical potential of a hole is 
then 

#h = (46) 
N,T,L 
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Substitution of Eq. (44) into Eq. (45), and the result into Eq. (46) gives 

h 
#h -= kb Tq} -f- k b Tln - -  (47) 

N + h  

In arriving at Eq. (47), by this method, it is necessary to use Eqs. (35) 
and (37). If we denote the mole fraction of the holes by 

h 
Xh -- (48) 

N + h  

Eq. (47) may be written in the form 

#h = k8 ln(e ~) Xh (49) 

from which it is apparent e ~ plays the role of an activity coefficient for 
holes, and that the chemical potential in the standard state to which we 
refer is zero. 

If we do not constrain the number of holes in the system, the 
equilibrium number can be obtained from the relation 

Comparison with Eq. (46) then indicates that the state achieved when the 
number of holes is unconstrained has 

#h (h not constrained)= 0 (51) 

Thus, according to the discussion following Eq. (49), the standard state to 
which reference is made in that equation is the state in which the number 
of holes is not constrained. Setting #h = 0 in Eq. (49) leads to the result 

N + < h )  N 
~ = l n  . . . .  ~ (52) 

< h > L /a  - N 

where Eq. (37) has again been used in arriving at the third member of this 
equation. Solving Eq. (52) for <h> gives Eq. (18) so that we do indeed 
recover the correct result for the equilibrium number of holes when that 
number is not constrained. 

Equation (52) shows that as the system becomes close packed ~b does 
not become constant. Thus, in spite of the dilution of the holes they do not 
behave as ideal solutes. 
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We can also write the expression for the pressure of the system when 
the number of holes is fixed at h. Again, we first evaluate the Helmholtz 
free energy by employing Eqs. (35), (44), and (45). Then the pressure is 
given by 

Evaluating the derivative in Eq. (53), again making use of Eq. (37), we find 

k rr 
p - ( 5 4 )  

a 

from which it is evident that ~b is proportional to the compressibility factor 
Z. In fact we have 

=Naz= 0 L paZ (55) 

Since, according to Eq. (38), ~b can be either positive or negative, Eq. (54) 
indicates that the pressure can be either positive or negative, i.e., when ~b is 
negative the pressure actually represents a tension causing the system to 
contract. 

From this point of view, the hard-rod system with a fixed number of 
holes behaves somewhat like a one-dimensional polymer molecule. 
However, the forces holding the system together are not due to nearest- 
neighbor "backbone" connections, but rather to a more subtle long-range 
interaction embodied in the requirement that only configurations consistent 
with the fixed number of holes are permissible. 

These considerations dealing with the chemical potential and the 
pressure, lead us naturally toward investigation of the allowable "space" of 
the thermodynamic variables of the system. This study is facilitated by 
Eq. (37). It is also convenient to introduce a parameter 0 = h/N which is a 
reduced number of holes. Equation (37) allows us to construct Fig. 1 in 
which pa is plotted versus 0 for values of 0 = 0, 0.5, and 1.0, respectively 
(solid curves). The region lying between the curves for Q corresponding to 
0 and 1.0, respectively, represents the permissible thermodynamic space for 
the system. Points lying above the curve for 0 = 0 correspond to states in 
which the rods and the required fixed number of holes would have to be 
more than close packed; an impossibility if the number of holes is to 
remain fixed. Points lying below the curve for which Q = 1.0 represent 
states in which the fixed number of holes would have to be exceeded. The 
curve for 0 = 0.5 corresponds to the situation in which ~b = 0. According to 
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Eq. (49), the activity coefficient of holes is unity along this curve, and the 
system behaves as an ideal solution of  holes. Fur thermore  according to 
Eq. (54) the pressure is zero along this curve; the system exerts neither con- 
tractive nor  expansive forces. 

The dashed curve is a plot of pa versus 0 for a system in which the 
number  of  holes is not  constrained, i.e., it is a plot  of  Eq. (23). We see that 
the plot for the unconstra ined system lies above the curve for Q = 0.5 but 
very close to it, except when 0 = 0, in which case it joins the "close packed" 
curve corresponding to Q = 0. 

Fig. 1. Allowable space of the thermodynamic variables for a hard-rod system with holes 
and density constrained. The solid curves represent values of Q = 0, 0.5, and 1.0, respectively, 
from top to bottom. For comparison, the dashed curve represents a system where the number 
of holes is not fixed, though the density is. 
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The region lying below the curve for Q = 0.5 corresponds to negative 
pressure and the system exhibits a tendency to contract. When the number  
of holes is unconstrained (dashed curve), the hole content can only vanish 
when pa = 1.0, i.e., when the rods are close packed. However, this is clearly 
not true when O is constrained to be greater than zero. For example, when 
O is constrained to be 0.5, Figure 1 shows that the hole content vanishes 
when pa is in the neighborhood of 0.67. 

Figure 2 is a plot of the free energy surface derived from Eq. (45) (the 
appropriate substitutions having been made) as a function of 0 and 1/pa. 
In this plot the free energy corresponding to kinetic energy is ignored, since 
for hard rods it depends only on temperature, and not on configuration. To 

Fig. 2. Free energy surface for the constrained system rotated clockwise through 45 ~ in the 
O, 1/pa plane; (N, M)=(1/pa+O, 1/pa--O). The solid line denotes the free energy of the 
unconstrained system. 
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facilitate a three-dimensional drawing, the surface was rotated clockwise 
through 45 ~ in the 0, 1/pa plane. Hence the N dimension of the figure 
corresponds to 1/pa + 0 and the M dimension to 1/pa-  O. From the figure 
it can be seen that when 0 is maintained constant (equivalent to con- 
stantN),  the minimum free energy occurs at values of density 
corresponding to the curve for (~ = 0.5, i.e., at the points where the pressure 
is zero. On the rotated surface these points are defined by M =  
1 / p a - 0  = 1.5. On the other hand when pa is held constant the minimum 
occurs at a value of 0 corresponding to the dashed curve of Fig. 1, i.e., the 
hole content is that which is normal for the unconstrained system. The loci 
of points corresponding to the unconstrained system is denoted by the 
smooth curve on the rotated free energy surface. This surface is best viewed 
in conjunction with the following figure. 

Figure 3 is the pressure surface given by Eq. (54), plotted as a function 
of 0 and 1/pa. The same rotation matrix was employed as for Fig. 2 and the 
perspective view is also identical. Hence the depicted surface corresponds to 
the transformation (0, pa) ~ (1/pa + O, l / p a -  O) = (N, M). The figure 
clearly shows the pressure range of + oe on the left where Q = 0 and M = 1 
to - o e  on the right where Q = 1 and M =  2. A straight line through the 
middle of the surface parallel to the N axis at M = 1.5 defines those states 
where the pressure is zero (Q=0.5) .  The smooth curve on the surface 
indicates the allowed values of pressure for the unconstrained system. 

Figure 4 is a schematic expanded version of a portion of the region in 
Fig. 1 lying between the curves for Q = 0 and Q = 0.5. We show portions of 
these two curves as well as the dashed curve corresponding to the 
unconstrained system. If the system is constrained initially, we have a fixed 
number of holes such that its state lies at point 1 on the curve for Q = 0.5, 
then its average density will be fixed at the value of pa prescribed by 
point 1. The fluctuation in this average density can be ignored in the ther- 
modynamic limit, so that if we now fix the length L of the system to corres- 
pond to this average density, such fixing will not represent the imposition 
of an additional constraint. If we then release the constraint on the number 
of holes, the system will decrease its free energy and move to point 2 on the 
dashed curve where the hole content will adopt an average value 
corresponding to that of an unconstrained system of length L. Now the 
hole content can fluctuate. However, again, in the thermodynamic limit, 
such fluctuations will be negligible. We can then reimpose a constraint on 
the number of holes maintaining that number exactly at the value 
corresponding to point 2. Again this represents no additional constraint. At 
this point, we are able to lift the constraint on the density (of the length) of 
the system, and it will decrease its free energy and move to point 3. By a 
similar sequence of steps it can be carried to points 4 and 5 in succession. 



700 Elkoshi, Reiss, and Hammerich 

Fig. 3. Pressure surface for the constrained system with perspective view parameters identical 
with those of Fig. 2. The pressure variation of the unconstrained system is shown as the solid 
line. 

We thus see that, ultimately lifting the constraints on the number of holes 
and the length of the system, leads to a continued expansion, and with it, 
an increase in the number of holes. Ultimately the system follows the curve 

= 0.5 to infinite length. Lifting the constraint on the number of holes 
leads to an increase in hole content, while imposing a constraint on the 
number of holes and lifting the constraint on the length leads to the expan- 
sion. However, the expansion is always bounded by the curve for which 
~) = 0.5. Below this curve a tensile force would be required in order to 
cause further expansion. Lifting a constraint, always increases the entropy, 
as it should. 
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Fig. 4. Response of the constrained system to a sequential removal of constraints placed 
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4. I N T E R N A L  S T R U C T U R E  

It is useful to employ our development to investigate aspects of the 
structure of the hard-rod fluid, and especially to note the effect of "holes on 
the structure." Ultimately this analysis wilt be useful in connection with the 
nonequilibrium behavior of the pair correlation function for hard rods. To 
this end, we will concentrate on characterizing the structure using both the 
nearest-neighbor distribution functions, and the conventional pair 
correlation function. 

In fact, we have already derived the nearest-neighbor distribution 
function in Eq. (36). If that equation is divided by N it becomes the 

822/41 ,'3-4-23 
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probability density P~(1) for the nearest neighbor to a given rod. This 
follows from the fact that 1 represents a space between the centers of two 
adjoining rods, and that g,t when divided by N gives the probability den- 
sity for the distribution of l which is the same as the distribution of nearest 
neighbors. In discussing the distribution function we find it convenient to 
use x in place of l. Then, according to what has been said, the nearest- 
neighbor distribution function is given by 

Pl(x)dX-hal_e_r . ._ e x~/adx, (n+l)a<x<~(n+2)a 

(56) 

where the limitation on the range of x originates in the condition, Eq. (4). 
Thus, Pl(x)dx which represents the probability that the nearest neighbor 
will be found at x, in the interval dx, is a piecewise function in the sense 
that when x lies between a and 2a the exponent n + 1 in the equation is 
unity. When x lies between 2a and 3a the exponent is 2, etc. However, in 
the special case that h is unconstrained, i.e., when h is given by Eq. (18), 
and r according to Eq. (52), is identical with ~ given by Eq. (15), then it is 
easy to show that the factor being raised to the power in question in 
Eq. (56) is unity. In fact, for this case in which the number of holes is not 
constrained, it can be shown that 

Pl(X)= P e-(X a)p/(l-p~) (57) 
1 - pa 

This result follows immediately from Eq. (56) upon setting the above-men- 
tioned factor equal to unity and writing for ~b = ~ the quantity prescribed in 
Eq. (15). Actually, we can also write Eq. (56) in terms of 0, the reduced 
number of holes. Thus we find, in place of Eq. (56), 

1 r {Oe~)  n+l 
Pl(X) d X = a O l - - e _ ~ \ l + O ]  e-XO/~dx, (n+l)a<x<~(n+2)a 

(58) 

The fact that the unconstrained system has a continuous nearest- 
neighbor distribution function, i.e., Eq. (57), while, when the number of 
holes is constrained, the nearest-neighbor function becomes immediately 
discontinuous, indicates the severe and detailed nature of the constraint. 
Such a constraint would be very difficult to apply or remove, in a reversible 
manner, by any reasonable process. To accomplish a reversible removal, 
for example, it would be necessary to have a "handle" on almost every 
molecule (rod) so that the maximum work could be extracted from the 
system, during removal. 
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The situation is analogous to that of a mixture of hydrogen and 
oxygen gases, constrained against reaction by the absence of a catalyst. If, 
for example, the constraint is removed by introducing a platinum catalyst, 
the reaction will proceed explosively, irreversibly. The only way to remove 
the constraint reversibly would be to again have a "handle" on each atom 
so that they can be "moved around" to allow the extraction of the 
maximum work. 

Thus the system in which the number of holes is constrained resembles 
a "metastable" one. From the purely thermodynamic point of view there is 
no difference between metastable and stable equilibrium. The only dif- 
ference resides in the ability to apply and remove constraints reversibly. 
However, thermodynamics is not concerned with the history of a system, 
and, hence, not with the manner in which it became constrained. Reiss has 
defined those constraints which can be applied reversibly as belonging to 
"class 1" while those which cannot be so applied belong to "class 2. ''1~5) 

Using Eq. (58) it is possible to prescribe the distribution function for 
the second nearest neighbor. The almost obvious result, which we denote 
by P2(x), is 

fa c-a Pz(X) = P I ( x -  x') Pl(x') dx', x > 2a 

=0,  x<.2a 

(59) 

In general for the j th  nearest neighbor, whose distribution we denote by 
Pj(x), we have 

Pi(x) = P I ( x - x ' ) P j _ I ( x ' ) d x ' ,  x > j a  
j i)a 

=0,  x <~ ja 

(60) 

By repeated application of the convolution theorem for the Laplace trans- 
form to the relation, Eq. (60), we find that 

Pj(t + ja) = 5g - ~ {5O[PI(t + a)] j } (61) 

in which S signifies the Laplace transform while 5O l represents the 
inverse transform [ 5  ~ should not be confused with the quantity introduced 
in Eq. (3)], and where 

Y { P l ( t + a )  = e -s 'p l ( t+a)d t  (62) 

in which s is the transform variable. It is frequently more convenient to 
derive the formula for the distribution of the j th  nearest neighbor by 
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repeated numerical application of Eq. (60) rather than by invoking the 
method of the Laplace transform. 

The conventional pair correlation function g(x) is given by 

pg(x)= ~ ~(x) (63) 
j = l  

We have evaluated g(x) for a variety of system states. Use has been 
made of Eq. (63) in which the various Pj(x) are determined by the repeated 
numerical application of Eq. (60), as indicated above. Figures 5-8 exhibit 
selected examples of these evaluations. In all of these figures 0 = 1 (but, in 
Fig. 5, h is not constrained so that only (0 ) ,  the average 0, is set at unity), 
and the fluid is reasonably dense. In the figures we plot g(x) versus x/a. 

Figure 5 corresponds to the case in which h is unconstrained and in 
which pa=0.409384. In generating the figure, P1 from Eq. (57) was 
employed. The result is identical with the hard-rod pair correlation 
function, derived previously by several other means. (16) 

Figures 6-8 are examples of the pair correlation function for situations 
in which h is constrained, i.e., 0, and not (0 ) ,  is set to unity. The dramatic 
effects of this constraint are graphically apparent. In Fig. 6 we illustrate a 
case for which ~b = 0.371220, so that the system exhibits normal positive 
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Fig. 6. Pair correlation function for the constrained system, where pa=0.405 and 0 =  l, 
indicative of positive pressure; r = 0.371220. 
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Pair correlation function for the constrained system, where pa = 0.4 and 0 = 1, when 
the pressure is zero; ~b = O. 
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Fig. 8. Pair correlation function for the constrained system, where pa = 0.38 and 0 = 1, for a 
case of negative pressure; ~b = -1.64917. 

pressure. The  correlat ion function begins in the same fashion as the 
unconst ra ined one in Fig. 5, but  beyond  x/a  = 2, it exhibits p ronounced  
saw toothl ike oscillations with a per iod of A x  = a. The discontinuities in 
the first derivative of g(x )  are connected to the range discontinuities, 
specified in Eq. (56). 

Figure 7 exhibits an example  with ~b = 0, i.e., with zero pressure. Here  
again we see the saw too th  oscillations and discontinuities, but  we note  
that  g(x )  for x < 2a has zero slope. Thus  there is no mean  force between 
rods spaced within this interval. This is not  surprising for a system which 
exhibits neither expansive or compress ive  tendencies. 

Figure 8, finally, shows a case with ~b=-1 .64917 .  This, of course, 
cor responds  to a negative pressure, and the system tends to contract .  Again 
we note the discontinuities in slope. However  now g(x )  commences  with a 
positive slope, indicating an attractive mean force. In  Fig. 6, cor responding 
to positive pressure (q~ > 0) the initial slope is negative, corresponding to a 
repulsive mean force. 

One  might  ask whether  any  derivative of pressure with respect to ~, at 
fixed h, shows a discontinuity at ~b = 0, indicating a higher-order  phase 
transition. Invest igat ion of this point,  however,  shows that  there are no 
such discontinuities. 
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5. S U M M A R Y  

We have introduced a well-defined structural entity which we refer to 
as a "hole" in a one-dimensional fluid of hard rods. These "holes" may be 
treated as thermodynamic species, and we derive the equilibrium concen- 
tration of holes as a function of fluid density. 

The concentration of holes is a thermodynamic variable and it is 
possible to investigate an ensemble in which this concentration is main- 
tained fixed while the density of the fluid is allowed to fluctuate. It turns 
out that there is poor correspondence between the properties of systems in 
which, on the one hand, holes are allowed to fluctuate and density is held 
fixed and, on the other hand, density is allowed to fluctuate but holes are 
held fixed. Thus the possible use of the "internally constrained" ensemble in 
which the concentration of holes is fixed, in place of the usual ensemble in 
which density is fixed, is compromised. 

The ensemble in which both holes and density are constrained is also 
developed. This ensemble exhibits both expansive and contractive behavior, 
i.e., positive and negative pressures. 

The "thermodynamics" of the rigorously defined holes is investigated. 
In particular, when the concentration of holes is unconstrained, the 
chemical potential of the hole is zero. Furthermore, at high densities, when 
the concentration of holes is small, the system assumes an increasingly lat- 
ticelike character. However, the holes never form an ideal dilute solution; 
the potentials of mean force become apparently of infinite range! 

The equilibrium concentration of holes is never proportional to the 
probability of finding a single hole in the fluid, an assumption which has 
been made frequently in the past. 

The internal structure of the fluid in which the concentration of holes 
is constrained is investigated. Fixing the number of holes has a dramatic 
effect on the pair correlation function, giving rise to discontinuities in slope. 

It would be interesting, and probably very useful, to develop a 
rigorous three-dimensional theory of holes. However, we have not yet been 
able to accomplish this. 
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